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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

The Internet of Things (IoT) extends the Internet wherein real world things are part of a computing network. The IoT has 

seen exponential growth and according to Cisco prediction about 50 billion devices will be connected by 2020. Handling this 

massive scale is challenging research issue. In this paper, we use cloud-fog-edge based IoT middleware for distributed IoT 

service provisioning. We model IoT middleware using queueing network, perform analytical analysis of IoT middleware 

components. Followed by dynamic scaling algorithm which considers contention and coherency as limiting factors for 

scalability. It is used for quantitative analysis of IoT middleware with the increasing workload. The scalability function was 

evaluated using the simulation for important performance and scalability parameters namely throughput, CPU utilization 

and response time. It is observed that because of contention and coherency overhead, the proposed approach is able to scale 

sub-linearly which is practical compared ideal scalability of multi-server queueing network and not very restrictive as given 

universal scalability law(USL) applied for tightly coupled systems. 
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1. INTRODUCTION 

The Internet of Thing is the emerging networking and 

and computing paradigm of this decade. The smart city, 
smart grid, health care, and Industrial IoT are the major 
deployments of IoT system till date. According to Cisco 
prediction about 50 billion devices will be connected by 
2020 [1]. This huge scale of devices producing data at 
frequencies ranging from every second/minute/hour as per 
application demand. The data generated by IoT system is 
one of the contributing factors for big data [2]. The 
scalability will emerge as one of pressing issue for IoT 
system management point of view. The current research 
trends IoT hardly considers scalability issue as a prime 
concern to be addressed. 
     The IoT Middleware acts as bridge between 
underlying IoT infrastructure and application. It helps to 
create, deploy and manage IoT services distributed in fog 
and cloud. The middleware functionalities include 
management of services, data, user and device context [3]. 
The non-functional IoT middleware requirements are 
scalability, heterogeneity, extensibility, security and 
privacy [4]. Cloud computing offers huge computing 
power and voluminous data storage which can be used for 
IoT. However it requires lot of data transfer, huge 
bandwidth and high latency. The fog computing is recently 
introduced computing paradigm placed near the edge of 
the IoT network. Fog computing enables service 
provisioning with low latency, local processing and 
temporary storage. 
     Scalability of IoT middleware (and IoT system in 
general) is poorly understood by the research community, 

in IoT literature scalability is mentioned and discussed 
subjectively. Quantitative analysis of scalability for IoT 
middleware is completely missing, which is motivation for 
our work in this paper. The specific contributions of this 
paper are as follows: 
i. Modeling of IoT scale network based on queueing 

theory [5], mathematical treatment of performance 
and scalability parameters. 

ii. We propose the scalability function which can be 
used for quantitative analysis of IoT middleware 
and reason upon the behavior of the IoT system 
particularly with respect to increased workload 
(both IoT devices and users). The dynamic scaling 
algorithm is presented for computing the optimal 
resource requirement to handle the current 
workload. 

iii. Evaluate the scalability and performance of IoT 
middleware with respect to increased workload 
 

     Multi-server queues in ideal settings are infinitely 
scalable, this is far from reality. In real-world system 
implementation the scalability is limited by contention and 
coherency. The proposed scalability functions consider 
contention and coherency overhead, the results of 
implementation and simulation show that the proposed 
system is able to scale sub-linearly with the increase in 
workload or size or both.   
        The rest of paper is organized as follows; in Section 2 
we discuss related work on the scalability of IoT 
middleware. In Section 3, typical IoT components and 
middleware internals are presented. Modeling of cloud-fog 
based IoT middleware using queueing theory for fog, 
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cloud and overall IoT system is elaborated in Section 4. In 
Section 5, we present scalability function based on 
modeling in the earlier section along with dynamic scaling 
algorithm. Section 6 presents the setting in which 
simulation is performed, and discuss results of the 
simulation for important performance and scalability 
parameters.   

2. LITERATURE SURVEY 

Scalability of IoT middleware is mostly neglected area by 
research community [3, 4, 26]. The scalability testing of 
IoT system can be done using quantitative measurement 
and quantitative analysis. In quantitative measurement, 
assessment of scalability is carried out by setting up 
testbed or benchmark system and performance of a system 
is monitored in a controlled environment. In [6] 
benchmark was set up for Fosstalk RFID middleware to 
analyze scalability and find out which component is a 
bottleneck. In [7] testbed was set up to test the scalability 
of components in IoT Enabled Service Architecture of 
FIWARE initiative [8]. Microservice based simulation of 
Smart city middleware in [9] conducts scalability test to 
handle dynamic smart city workload in the cloud 
environment, deploying an optimum number of VMs 
using auto-scaling. Scalability analysis done using 
quantitative measurement cannot be generalized to any 
kind of IoT system. The scalability of IoT middleware is 
required to consider diversity in size of the network, type 
of network, the number of users, type service provided, 
where data is processed; each of these factors caters to the 
complexity of scalability assessment problem. 
        Scalability and performance test of IoT middleware 
can be done using quantitative analysis using the proven 
approach of queueing theory. Queueing theory provides 
more reliable answers to the behavior of IoT middleware 
with an increase in workload as well as identifying the 
bottleneck in building scalable system [5]. There are only 
a few works using queue theory [27] for analyzing the 
scalability and performance of the IoT system. The work 
in [10] proposes edge-cloud distributed algorithm to 
address delay sensitive processing requirement of for 
augmented reality application for a citywide network, 
author mention about the scalability of their optimization 
algorithm work but details are missing. Authors in [11] 
propose a load balancing scheme of fog nodes by 
associating fog node with suitable base station node to 
reduce computing and communication delay. In [12] 
analytical model using continuous time Markov 
chain(CTMC) is proposed for evaluating the performance 
of fog node for heterogeneous fog nodes/containers. 
Capacity planning to determine the optimal amount of 
resources required at the fog, cloud-based on queueing 
network and Petri Nets given in [13] only initial stage of 
work is found, the details of work are missing. The work 
in [14] IoT is modeled as a closed system, experimental 
analysis of middleware API is done to predict the 
performance IoT system. In [15] the queueing model is 
used for resource management and scheduling. The 
performance analysis of IoT network consisting of cloud 
data center and edge computing is carried out in [16]. Our 

proposal differs from work in [6]-[16], i) we consider the 
more practical model of request handling at fog using 
M/M/c/N, because it has limited capacity to handle 
growing traffic of user and IoT devices, ii) Our focus was 
to evaluate the scalability of middleware, so we propose 
scalability function with due consideration to contention 
and coherency in distributed processing. 

 
Figure1. Cloud-Fog based Internet of Things middleware 

architecture 

3. CLOUD-FOG BASED INTERNET OF THINGS 

ARCHITECTURE 

The cloud-fog-edge based IoT architecture is as shown in 
Fig. 1. The IoT devices are at the edge of network. It can 
be sensors actuators, monitoring the phenomenon of 
interest and producing observation/action continuously or 
on demand. These devices have built-in communication 
capability to connect nearby devices. They also have 
limited computing capability. IoT devices are connected to 
fog directly or through gateway. Fog computing made up 
of Micro Data Center (MDC). Micro Data Center consists 
of computing resources of two types: fog controller and 
fog nodes. Fog controller manages all the resources at 
MDC. Fog nodes provide computational capacity close to 
edge of IoT network, which will help in pre-processing 
data, fulfilling most of requests locally, only 
computationally intensive requests are moved to cloud, 
thus saving bandwidth and energy. Cloud data center 
offers on-demand services, computing power required for 
intensive processing, archival data storage. It uses machine 
learning techniques to learn from data and adjust system 
operation. Users consume the services enabled by the IoT. 
They connect to the IoT network through various 
connecting technologies (BLE, Wi-Fi) and devices 
(smartphones, computers). User may be local to IoT 
network and has access to the services locally. Remote 
users connect to IoT network through cloud.  
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3.1 Distributed IoT Middleware 

Based on hierarchical structure of IoT system, the 
distributed IoT middleware is able to provide service 
orchestration in cloud and fog as shown in Fig 2.       
 

 
Figure 2: Distributed cloud-fog middleware 

 
 
 
 
 

 

Figure3: Model of IoT Middleware using queuing network  
 
Middleware manages distributed processing using service 

orchestrator and fog controller. Service orchestrator 
handles service which are computationally intensive or not 
delay-sensitive e.g. big data analytics request. Service 
orchestrator is central component of middleware. It 
controls the operation of fog controller and prepares 
service execution plan. 

Fog controller is responsible for execution of service 
request locally and controls fog nodes. Fog controller can 
function independently if service orchestrator is 
unavailable. It distributes service execution request among 
fog nodes. Fog nodes interact perform sensing, actuating 
task either on-demand or periodically. Resource manager 
keeps track of all fog nodes, service request, service 
request queue, utilization, availability of gateways, and 
devices added to/removed from IoT network. Service 

registry maintains directory of computing service offered 
and their corresponding implementation. It exposes this 
directory through API which can be used by resource 
manager and fog controller. Context manager monitors 
device and user context. Context are used to provide 
situational awareness. Network manager is responsible for 
seamless connectivity among different elements and 
device mobility. IoT middleware uses multiple 
communication technologies for connecting IoT devices, 
gateways, fog and cloud. e.g. 4G, WiFi, BLE etc. 
Applications use standard API (e.g. HTTP or web service 
interface) to interact with middleware. Fog nodes use 
device specific APIs/drivers are used to interact with IoT 
devices. 

4. MODELING DISTRIBUTED IOT MIDDLEWARE 

Users are sending the various request to IoT middleware 
which includes sensing, actuation, historical data, device 
management related data such as adding devices, updating 
device profile. IoT device also keeps on sending data to 
middleware e.g. sensor reading upon user request, 
periodically, or when the phenomenon the device is 
monitoring is changed, the profile of the device is 
changed. IoT devices generated data is received by fog 
node for processing.. The data arrival rate λ is assumed 

follow Poisson distribution. Fog nodes are modeled as 
M/M/c queue. Service rate is number of requests the fog 
node can execute per second and is exponentially 
distributed. For fog nodes, if the request processing rate 
from IoT device is greater than service rate. Fog node will 
for incoming requests to fog controller for offloading to 
cloud. The resource manager continuously monitors the 
utilization, queue length and throughput for every fog 
node. When the server finishes the execution of the current 
request, it retrieves the request waiting first come first 
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serve manner. All fog nodes share the same queue. 
Modeling IoT middleware using the network of queues is 
as shown in Fig.3. 

   A fog node can accept at most K number of request 
into the system, K >= c. If there is the arrival of request 
while the queue is full, the fog controller will search for 
lightly loaded nearby fog node if available otherwise 
offloaded to cloud. 
 

Table1: Queueing parameters of IoT system 

Notation Description 

λcloud  Net arrival rate of requests at cloud data center 
λfog  Net arrival rate of requests at fog 
 µ   Service rate of a computing node 
Π  Steady state probability 
Ρ  Load or intensity 
T  Response time 
Tq  Waiting time in queue 
S  Mean service time 
N  Number of requests in system 
Nq  Number of requests in queue waiting for queue 
C  Number of servers sharing same queue 
Pb  Probability that request is blocked because 

 queue is full 
Pcloud,fog  Probability that request is forwarded to fog 

 server to  fulfill 
Pfog, cloud  Probability that request is forwarded to cloud  

 for  intensive processing or for storing data to 
datastore 

K  Queueing capacity of fog computing center 
R   Minimum resource requirement to handling 

 given  arrival rate 
X  Throughput 

Nusers  Number of active users 
Niot  Number of IoT devices managed by single 

MDC 
 

4.1 Micro Data Center 

The arrival rate of requests at fog (𝜆𝑓𝑜𝑔) will be a 

combination of a portion of requests arriving from the 
cloud and, the portion of requested generated on-premise 
user and IoT devices is : 
 

         𝜆𝑓𝑜𝑔 = 𝜆𝑐𝑙𝑜𝑢𝑑 ∗ 𝑃𝑐𝑙𝑜𝑢𝑑,𝑓𝑜𝑔(1 − 𝑃𝑏) + 𝜆𝑙𝑜𝑐𝑎𝑙(1 − 𝑃𝑏)    (1) 
 

          𝜆𝑓𝑜𝑔 = (𝜆𝑐𝑙𝑜𝑢𝑑 ∗ 𝑃𝑐𝑙𝑜𝑢𝑑,𝑓𝑜𝑔 + 𝜆𝑙𝑜𝑐𝑎𝑙)(1 − 𝑃𝑏)              (2) 
 
        The notations for parameters used in this paper are 
shown in Table 1. For steady state the arrival rate 𝜆𝑓𝑜𝑔 and 

service time µ𝑓𝑜𝑔should follow 𝜆𝑓𝑜𝑔/µ𝑓𝑜𝑔<1. The 

expected number of requests 𝑃𝐾in at any time for 
M/M/c/K system is given below [3]: 

                           𝑃𝐾 = (𝑐𝑓𝜌)𝑁𝑐𝑓!𝑐𝑓𝑁−𝑐𝑓 𝑃0                                  (3) 

        The number of requests 𝑁, requests waiting in queue 
Nq, waiting time in the queue 𝑇𝑞, response time 𝑇, 

utilization 𝜌, and throughput for fog nodes can be 
calculated using formulae given in Table 2. 
 

4.2 Cloud Computing Center 

        The cloud computing center is modeled as M/M/c 
queue with the inter-arrival time between requests follows 
a Poisson distribution. The service time µ𝑐𝑙𝑜𝑢𝑑  is identical 
for all 𝑐 servers which is exponentially distributed. The 
requests are processed in a FCFS manner and queue has an 
infinite capacity to hold incoming request. The total arrival 
rate of requests at the cloud server is consists of a rate of 
requests coming from outside of network and rate of 
requests coming from fog: 
              𝜆𝑐𝑙𝑜𝑢𝑑 = 𝜆𝑓𝑜𝑔 ∗ 𝑃𝑐𝑙𝑜𝑢𝑑,𝑓𝑜𝑔 + 𝜆𝑟𝑒𝑚𝑜𝑡𝑒                 (4) 

At steady state, the flow balance equation is (subscript 
cloud is omitted for sake of clarity): 𝜋𝑖 = 𝑐𝜌𝑖𝜋0𝑖! 𝑐 ≤ 𝑖 
                                   𝜋𝑖 = 𝑐𝑐𝜌𝑖𝜋0𝑖! 𝑐 > 𝑖                           (5) 

The system utilization is ρ = λ/cμ, the arrival rate of the 
individual server is : 

                                       𝑅 = 𝜆𝑐𝑙𝑜𝑢𝑑µ𝑐𝑙𝑜𝑢𝑑                                   

(6) 
where R is a resource requirement, the minimum number 
of servers required to process given arrival rate. For 
example, if the arrival rate is λ = 30 req/sec and service 
rate μ = 5 req/sec, the minimum of 6 servers are required 
for a stable system. A request arrives at the data center, the 
probability that request has to queue because all servers 
are busy is: 

                       𝑃𝑄 = ∑ 𝜋𝑖∞𝑖=𝑘 = 𝐾𝐾𝐾! 𝜋0 ∑ 𝜌𝑖∞𝑖=𝑘                   (7) 

                          𝑃𝑄 = (𝑐𝜌)𝑖𝑐!(1−𝜌) 𝜋0                             (8) 

where 𝜋0 is: 

                       𝜋0 = [∑ 𝑘𝜌𝑖𝑖!∞𝑖=𝑐 + (𝑘𝜌)𝑘𝑘!(1−𝜌)]−1
                    (9) 

     The above equation is the Erlang-C formula for M/M/k 
queueing system [7]. The number of requests N, requests 
waiting in queue for service Nq , waiting time in queue Tq, 
response time T , utilization of fog system ρ, throughput 
for cloud can be calculated using formulae given in Table 
2. The minimum resource requirement R given in (6) to 
service given incoming load at arrival rate λ. If the 
workload increases by a factor of x, the resource 
requirement R for the increased workload is obtained 
using square root staffing rule [5] as below: 

                                     𝑐 = 𝑅 + 𝑑√𝑅                             (10) 
 

where positive d is constant determined according to based 
on desired QoS and the second term is the additional 
resource (staffing) required in order to meet desired QoS 
given in SLA under the uncertain workload. 

5.  SCALABILITY  

IoT is a hot research area nowadays, scalability of IoT 
middleware (and IoT system in general) has remained a 
neglected research topic. It is used ambiguously, and there 
is no agreed upon definitions. Bondi define [19] scalability 
as “the capability of a system, network, or process to 
handle a growing amount of work, or its potential to be 
enlarged in order to accommodate that growth”. This 
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definition can be used to understand the growing 
phenomenon but lacks the quantification required to 
measure and reason upon the behavior of the system. 
According to Weinstock [20], “scalability is the ability to 
handle the increased workload by repeatedly applying a 
cost-effective strategy for extending a system’s capacity”. 
In the art of scalability [21], the author introduces 

scalability cube in which x-axis represents breaking 
workload among parallel processing units, the y-axis 
represents breaking workload based on the type of request, 
z-axis represents dividing workload based on the type of 
user. The given system can apply any combination of x, y, 
and z-axis split to achieve scalability. The techniques used 
in the distributed system [22] for scalability

 
Table 2: Performance measures for IoT network of queues 

Metrics Fog (M/M/c/K) Cloud (M/M/c) 

Queue length (Nq) 𝑁𝑞 = 𝑃0(𝑐𝜌)𝑐𝜌𝑐!(1−𝜌) 2 [1 − 𝜌𝐾−𝑐 − (𝐾 − 𝑐)𝜌𝐾−𝑐] 𝑁𝑞 = 𝑃𝑄 𝜌(1−𝜌) 
Number of in system (N) 𝑁 = 𝑁𝑞 + 𝜆𝑓𝑜𝑔µ𝑓𝑜𝑔 𝑁 = 𝜆𝑇 = 𝑃𝑄 𝜌(1−𝜌) + 𝑐𝜌 

Waiting time in queue(Tq) 𝑇𝑞 = 1𝜆𝑓𝑜𝑔 𝑁𝑞 𝑇𝑞 = 1𝜆 𝑁𝑞 = 1𝜆 𝑃𝑄 𝜌(1−𝜌) 
Response time (T) 𝑇 = 𝑇𝑞 + 1𝜇 𝑇 = 𝑇𝑞 + 1𝜇 = 1𝜆 𝑃𝑄 𝜌(1−𝜌) + 1𝜇 

System utilization (ρ) 𝜌 = 𝜆𝑐𝜇 𝜌 = 𝜆𝑐𝜇 

Throughput (X) 𝑋𝑖 = 𝜆𝑖 𝑋𝑖 = 𝜆𝑖 
 
are i) replication ii) caching iii) load 
distribution/balancing, and iv) asynchronous request 
handling. 

According to Jogalekar [23], “scalability Ψ(k1; k2) 
from one scale k1 to another scale k2 is the ratio of the 
efficiency figures for the two cases”, as given below: 
 

                           𝛹(𝑘1;  𝑘2)  =  𝐸(𝑘2)𝐸(𝑘1)                           (11) 

where 𝐸(𝑘1) 𝐸(𝑘2) are efficiencies at workload 𝑘1 and  𝑘2. 
In the Guerrilla Capacity Planning book [24], Gunther 
defines scalability as “functional relation between the 
independent variable and dependent variable”. e.g. the 
relation between response time and arrival rate, number of 
processor and throughput, etc. Universal scalability law 
(USL) provides the mathematical background for 
scalability in parallel and distributed computing 
environment as described below. Speed up [24] is defined 
as “the ratio of time required to compute given the task in 
T1 time units on uniprocessor system to the same amount 
of work carried out on the p-way multiprocessor system”. 
The given task is broken into sub-task, fed to processors, 
executed in a parallel fashion and speed up is achieved. 
There is a certain amount of work which cannot be 
parallelized given by Amdahl’s law below: 

                              𝑋 = 𝑒𝑐1+𝜎(𝑐−1)                                    (12)  
 

where σ is the coefficient of contention, e is slope 
constant. 
The contention is part of work which cannot be 
parallelized and queue up. Thus degrades scalability and 
contribute to limiting factor on scalability. 

In a multiprocessor environment, every processing (core 
or fog nodes) element maintains own copy of data in the 
cache. When one processor modifies data element it needs 
to update at all other processor holding the same data 
element. This introduces cache coherency overhead, it 
increases quadratically with the number of processors, 

given by the degree of a fully connected graph. The 
equation (12) becomes: 

                           𝑋 = 𝑒𝑐1+𝜎(𝑐−1)+𝛽𝑐(𝑐−1)                          (13) 

where β is coherency coefficient. The equation (13) is 
Gunther’s universal scalability law. Gunther has 
demonstrated the applicability of USL in distributed 
processing e.g. three-tier web application [24], Hadoop 
processing [25]. 
 

Fog middleware fetches the data on behalf of the user. 
Fog node maintains the latest sensor readings. Even if 
every fog node maintains a local copy of sensor reading, it 
does not modify the data and hence there is no cache 
consistency overhead. The USL in (12) cannot be directly 
applied to the IoT scenario. For multi server queue M/M/c 
or M/M/c/K, when utilization reaches threshold say 80% 
or response time is more than specified in SLA, more 
resources are added, e.g. in a cloud-based environment, 
additional fog nodes are deployed to meet the current load. 
Such configuration of multi-server queueing systems is 
infinitely scalable. But it practice scalability is limited by 
contention as given in equation (12). IoT system as a 
distributed system, organized in a hierarchical fashion 
with cloud data center is at root, fog nodes at level 1, then 
gateway connecting IoT device at level 2 and finally IoT 
devices are at edge of network. 
i. As the number of users λ users increases the 

service manager module will interact more 
frequently with the service discovery module, 
data store, event handler, and context manager. 

ii. Increase in the number of IoT devices will cause 
frequent updates in the data store, device registry, 
context manager, which will trigger interaction 
among the rest of the module and with cloud 
computing center. 

iii. Load balancer and resource manager work grows 
with the increase in the number of active users 
Nusers, the number of IoT device Niot managed by 
single fog computing center and varying number 
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of fog nodes as per current workload demand. 
Therefore scalability function for IoT middleware 
is given by: 

                        𝑋 = 𝑐1+𝜎(𝑐𝑓𝑜𝑔−1)+𝑘(𝑎𝑁𝑢𝑠𝑒𝑟𝑠+𝑏𝑁𝑖𝑜𝑡)𝑐𝑓𝑜𝑔            (14) 

coefficients a, b are coherency introduced because of users 
and IoT devices respectively. Equation (14) is scalability 
function for IoT middleware, modeling relation between 
throughput X, number of fog nodes c, to handle current 
workload, number of active users Nusers, and number of 
IoT device Niot . 
 
5.1 Performance monitoring and dynamic scaling 
The following algorithm gives the procedure for 
monitoring the performance of the system modeled in 
Section 4 and Section 5. In beginning the threshold values 
for response time, utilization, number of requests in the 
queue is set. The parameter values system utilization, the 
number of requests in the queue, number of requests in the 
system, waiting time, response time and throughput, at fog 
are calculated for given arrival rate. The program 
continuously monitors values for response time, utilization, 
number of requests in the queue, if any of these condition 
turns true. The resource demand for the current arrival rate 
is calculated and an additional number of instances of fog 
nodes are deployed to meet current processing demand. 
 
Table4: Dynamic scaling algorithm for fog computing 
center 
Ln Statements 

1 Input: λ, μ, c, K 

2 Output: Utilization, X, T and N q are below threshold 

3 Begin 

4 Set thresholds  Nt, Ut 

while(TRUE) 
 { 

5  //compute all performance parameters for current 
// arrival rate 

6  //System utilization 
7  𝜌 = 𝜆𝑐µ 

8  // Waiting for queue length (Nq) 
9  𝑁𝑞 = 𝑃0(𝑐𝜌)𝑐𝜌𝑐!(1−𝜌) 2 [1 − 𝜌𝐾−𝑐 − (𝐾 − 𝑐)𝜌𝐾−𝑐𝑢] 
10  // Number of requests at fog            
11  𝑁 = 𝑁𝑞 + 𝜆𝑓𝑜𝑔µ𝑓𝑜𝑔 

12  // Waiting time in queue(Tq) 
13  𝑇𝑞 = 1𝜆𝑓𝑜𝑔 𝑁𝑞 

14  // Response time 
15  𝑇 = 𝑇𝑞 + 1𝜇 

16       // Throughput 
17  𝑋 = 𝑐1+𝜎(𝑐𝑓𝑜𝑔−1)+𝑘(𝑎𝑁𝑢𝑠𝑒𝑟𝑠+𝑏𝑁𝑖𝑜𝑡)𝑐𝑓𝑜𝑔  

18     // Monitor value of performance parameters every  
   //  t interval 

19      if(Nq>Nt|| U>Ut) 
20            alert(“More resources need to added to be 

                      added to handle the current load”) 
21     // Compute no. of fog nodes required to meet 

   //  service demand 
22  𝑅 = 𝜆𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝜇  

23  𝑐 = 𝑅 + 𝑑√𝑅 
24   }  
25 End 
Ln: Line number 

6. RESULTS AND DISCUSSIONS 

The scalability functions introduced in Section 5 and 
M/M/c/K queue for fog nodes are implemented in Java. 
We have used Java Modeling Tool (JMT) for simulation 
of queueing network build for cloud-fog based IoT 
middleware Section 4. JMT is open source modeling tools 
used for solving a wide variety of problems modeled as 
queueing systems. The results Java program for FCC and 
its corresponding simulation in JMT are almost matching, 
which validates our experiment. In this section, we 
provide details of our experiment and simulations. 
        The fog has enough resources to carry out local, and 
real-time request processing. To evaluate the response of 
fog with an increase in load we have implemented 
scalability function. The arrival rate was increased from 
1000 req/sec to 5000 req/sec, the number of fog nodes 
used to handle request requests was increased from 1 to 
50. The observed throughput is given in Fig. 4(a). In the 
hierarchical organization of the cloud-fog based IoT 
system, the coherency overhead is less, hence the 
scalability function is given (14) shows significant 
improvement compared to USL. But there is coherency 
introduced because of interaction among middleware 
modules, so the scalability achieved is sub-linear. 
Compared to the ideal throughput is 5000 req/sec, 
Amdahl's equation achieves 4016 req/sec while the 
scalability function introduced in this paper achieves only 
3508 req/sec. 
 
Table 4: Specification of parameter values for simulation 

Parameter Fog Cloud 

λfog 1000(1-PK) 250 
λlocal_user 250 75 
λIoT_data 250 175 

K 100 NA 
 µ fog 800 NA 
cfog 3 NA 

Pfog,cloud 0.5 NA 
λcloud,  500 1000 
 µcloud NA 7000 
 cloud NA 10 

Pcloud,fog NA 0.75 
 

  The network of queues consisting of fog and cloud 
servers was built using the JSIM tool of JMT. The 
simulation started with an overall 1000 requests arriving 
per second. The parameter important for simulation and 
their values are given in Table 4. There are two category 
of traffic entering local users request and remote users’ 
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request. The requests entering into system at cloud are by 
remote users λ cloud at arrival rate of 1000 req/sec. The 
requests are processed at cloud leave system with 0.3 
probability or forwarded to fog nodes with 0.7 probability. 

   We used 10 physical servers (PS) at cloud data center, 
each can accommodate maximum 7 fog nodes, and each of 
fog nodes is capable of handling 100 requests per second. 
The total service rate at cloud is 7000 requests per second. 
At fog there are 3 fog nodes, each can process 800 
incoming requests per second. The total service rate at fog 
is 2400 requests per second and queue capacity is 100 
requests/sec. 
Using what-if analysis feature of JMT, arrival rate was 
increased from initial 1000 req/sec to 5000 req/sec with 
increment of 250 in every step. Increase in utilization of 

fog nodes at fog and cloud is shown in Fig. 4(b), with an 
increase in arrival rate, utilization increases in proportion. 
At fog nodes since processing capacity is limited all nodes 
reach 100% utilization at an arrival rate of 2400 requests 
per second. For all arrival rate above 2400 req/sec the 
requests were forwarded to cloud as shown in Fig. 4(c), at 
5000 req/sec 2581 requests for worded per second, the 
forwarding rate was rate was 51.64%, which indicated that 
fog computing center was overloaded and unable to handle 
current workload became, hence became bottleneck. In the 
case of cloud computing center, the utilization was 80% 
even at the maximum arrival rate. 

   The mean response time increases with an increase in 
arrival rate as shown in Fig. 4(c). The SLA for maximum 

 

 
(a) Throughput comparison of Ideal, Amdahl's Contention 

USL and IoT scalability function 

 
(b)CPU Utilization with increase in arrival rate 

 
(c) Mean response time 

 
(d)Throughput 

Figure 4: Scalability and performance analysis 

response  time was set to 20 ms (it is time spent by request 
in the system, end to end response time which user will 
experience requires considering transmission delay of 
LAN and WAN based on the category of a user). At 2400 
req/sec drastically rise from 15ms to 120ms. It was 
necessary to add more fog nodes in order to meet given 

SLA. At cloud computing center the response time was 
less than 20ms even at 5000 req/sec. The throughput in 
terms of the number of requests fulfilled per second is 
shown in Fig. 4(d). Throughput goes on increasing with 
arrival rate. 
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   Fog computing center was unable to handle the 
increase in arrival rate from 1000 req/sec to 5000 req/sec. 
The utilization was full, response time grown 
unpredictably, throughput was saturated and the drop rate 
was 51.64%. JMT simulation provides very useful insight 
for understanding the working of cloud-fog based IoT 
middleware. However, JMT lacks dynamic resource 
allocation, which was required in case of fog computing 
center at the arrival rate of 2400 req/sec. In order to handle 
this dynamic behavior we have implemented dynamic 
scaling algorithm introduced in Section 5.1, the results are 
as shown in Fig. 4(b)-(d). Initially, 3 fog nodes were used 
to handle requests. As arrival rate of requests increased 
utilization increased proportionally at 2000 req/sec 
utilization is 83.33%, new resource demand at this arrival 
rate was calculated and two more additional fog nodes 
were deployed, in this fashion fog computing center was 
able to handle growing resource demands as shown in Fig. 
4(b). For all the experiments and simulations we used Dell 
Inspiron 15 with i7 processor, 8GB memory and Ubuntu 
18.04. 

7. CONCLUSION 

In order to address the tremendous growth the IoT network 
is witnessing, scalability is one of the pressing issues must 
be resolved by researchers. The hierarchical organization 
of cloud-fog based IoT system enables scalability by the 
architectural design itself. However, the rapid increase in 
load on fog by factor multiple of current workload, fog 
computing center will become the bottleneck. In this 
paper, we have systematically presented the scalability 
analysis of fog based Internet of Things middleware. We 
first modeled the IoT system using a queueing network, 
based on the foundation of this model; scalability function 
is presented which considers contention and coherency 
overhead which limits scalability. 
        We were interested in finding the effect of an 
increase in the number of users or IoT devices on 
throughput, utilization, response time of fog and cloud. 
These parameters are crucial for answering the questions 
related to the scalability of IoT middleware. We conducted 
a simulation using JMT simulator. The results of 
simulation and implementation show that the proposed 
model scales sub-linearly. These results are general 
enough to apply in any setting of IoT middleware and 
application set up, it does not depend on any particular 
suite of technology e.g. if fog nodes is replaced by docker 
container. When fog center becomes overloaded, 
investigating scalability by offloading requests to 
neighboring fog nodes rather than remote cloud will be our 
future work. 
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