
Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4162

Scalability of M/M/c Queue based Cloud-Fog
Distributed Internet of Things Middleware

Dilip Rathod

Research Scholar, Dept. of Computer Science and Engineering, Research Center: Shri Guru Gobind Singhji Institute of
Engineering and Technology, Under SRTM University, Nanded, Maharashtra, India.

Email: rathod.dt@gmail.com
Dr. Girish Chowdhary

Professor and Director, School of Computational Science, Swami Ramanand Teerth Marathwada (SRTM) University,
Nanded, Maharashtra, India.

Email: girish.chowdhary@gmail.com

---ABSTRACT---

The Internet of Things (IoT) extends the Internet wherein real world things are part of a computing network. The IoT has

seen exponential growth and according to Cisco prediction about 50 billion devices will be connected by 2020. Handling this

massive scale is challenging research issue. In this paper, we use cloud-fog-edge based IoT middleware for distributed IoT

service provisioning. We model IoT middleware using queueing network, perform analytical analysis of IoT middleware

components. Followed by dynamic scaling algorithm which considers contention and coherency as limiting factors for

scalability. It is used for quantitative analysis of IoT middleware with the increasing workload. The scalability function was

evaluated using the simulation for important performance and scalability parameters namely throughput, CPU utilization

and response time. It is observed that because of contention and coherency overhead, the proposed approach is able to scale

sub-linearly which is practical compared ideal scalability of multi-server queueing network and not very restrictive as given

universal scalability law(USL) applied for tightly coupled systems.

Keywords - Fog computing, Internet of Things, middleware, queueing network, and scalability etc.

--
Date of Submission: May 28, 2019 Date of Acceptance: July 15, 2019
--

1. INTRODUCTION

The Internet of Thing is the emerging networking and

and computing paradigm of this decade. The smart city,
smart grid, health care, and Industrial IoT are the major
deployments of IoT system till date. According to Cisco
prediction about 50 billion devices will be connected by
2020 [1]. This huge scale of devices producing data at
frequencies ranging from every second/minute/hour as per
application demand. The data generated by IoT system is
one of the contributing factors for big data [2]. The
scalability will emerge as one of pressing issue for IoT
system management point of view. The current research
trends IoT hardly considers scalability issue as a prime
concern to be addressed.
 The IoT Middleware acts as bridge between
underlying IoT infrastructure and application. It helps to
create, deploy and manage IoT services distributed in fog
and cloud. The middleware functionalities include
management of services, data, user and device context [3].
The non-functional IoT middleware requirements are
scalability, heterogeneity, extensibility, security and
privacy [4]. Cloud computing offers huge computing
power and voluminous data storage which can be used for
IoT. However it requires lot of data transfer, huge
bandwidth and high latency. The fog computing is recently
introduced computing paradigm placed near the edge of
the IoT network. Fog computing enables service
provisioning with low latency, local processing and
temporary storage.
 Scalability of IoT middleware (and IoT system in
general) is poorly understood by the research community,

in IoT literature scalability is mentioned and discussed
subjectively. Quantitative analysis of scalability for IoT
middleware is completely missing, which is motivation for
our work in this paper. The specific contributions of this
paper are as follows:
i. Modeling of IoT scale network based on queueing

theory [5], mathematical treatment of performance
and scalability parameters.

ii. We propose the scalability function which can be
used for quantitative analysis of IoT middleware
and reason upon the behavior of the IoT system
particularly with respect to increased workload
(both IoT devices and users). The dynamic scaling
algorithm is presented for computing the optimal
resource requirement to handle the current
workload.

iii. Evaluate the scalability and performance of IoT
middleware with respect to increased workload

 Multi-server queues in ideal settings are infinitely
scalable, this is far from reality. In real-world system
implementation the scalability is limited by contention and
coherency. The proposed scalability functions consider
contention and coherency overhead, the results of
implementation and simulation show that the proposed
system is able to scale sub-linearly with the increase in
workload or size or both.
 The rest of paper is organized as follows; in Section 2
we discuss related work on the scalability of IoT
middleware. In Section 3, typical IoT components and
middleware internals are presented. Modeling of cloud-fog
based IoT middleware using queueing theory for fog,

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4163

cloud and overall IoT system is elaborated in Section 4. In
Section 5, we present scalability function based on
modeling in the earlier section along with dynamic scaling
algorithm. Section 6 presents the setting in which
simulation is performed, and discuss results of the
simulation for important performance and scalability
parameters.

2. LITERATURE SURVEY

Scalability of IoT middleware is mostly neglected area by
research community [3, 4, 26]. The scalability testing of
IoT system can be done using quantitative measurement
and quantitative analysis. In quantitative measurement,
assessment of scalability is carried out by setting up
testbed or benchmark system and performance of a system
is monitored in a controlled environment. In [6]
benchmark was set up for Fosstalk RFID middleware to
analyze scalability and find out which component is a
bottleneck. In [7] testbed was set up to test the scalability
of components in IoT Enabled Service Architecture of
FIWARE initiative [8]. Microservice based simulation of
Smart city middleware in [9] conducts scalability test to
handle dynamic smart city workload in the cloud
environment, deploying an optimum number of VMs
using auto-scaling. Scalability analysis done using
quantitative measurement cannot be generalized to any
kind of IoT system. The scalability of IoT middleware is
required to consider diversity in size of the network, type
of network, the number of users, type service provided,
where data is processed; each of these factors caters to the
complexity of scalability assessment problem.
 Scalability and performance test of IoT middleware
can be done using quantitative analysis using the proven
approach of queueing theory. Queueing theory provides
more reliable answers to the behavior of IoT middleware
with an increase in workload as well as identifying the
bottleneck in building scalable system [5]. There are only
a few works using queue theory [27] for analyzing the
scalability and performance of the IoT system. The work
in [10] proposes edge-cloud distributed algorithm to
address delay sensitive processing requirement of for
augmented reality application for a citywide network,
author mention about the scalability of their optimization
algorithm work but details are missing. Authors in [11]
propose a load balancing scheme of fog nodes by
associating fog node with suitable base station node to
reduce computing and communication delay. In [12]
analytical model using continuous time Markov
chain(CTMC) is proposed for evaluating the performance
of fog node for heterogeneous fog nodes/containers.
Capacity planning to determine the optimal amount of
resources required at the fog, cloud-based on queueing
network and Petri Nets given in [13] only initial stage of
work is found, the details of work are missing. The work
in [14] IoT is modeled as a closed system, experimental
analysis of middleware API is done to predict the
performance IoT system. In [15] the queueing model is
used for resource management and scheduling. The
performance analysis of IoT network consisting of cloud
data center and edge computing is carried out in [16]. Our

proposal differs from work in [6]-[16], i) we consider the
more practical model of request handling at fog using
M/M/c/N, because it has limited capacity to handle
growing traffic of user and IoT devices, ii) Our focus was
to evaluate the scalability of middleware, so we propose
scalability function with due consideration to contention
and coherency in distributed processing.

Figure1. Cloud-Fog based Internet of Things middleware

architecture

3. CLOUD-FOG BASED INTERNET OF THINGS

ARCHITECTURE

The cloud-fog-edge based IoT architecture is as shown in
Fig. 1. The IoT devices are at the edge of network. It can
be sensors actuators, monitoring the phenomenon of
interest and producing observation/action continuously or
on demand. These devices have built-in communication
capability to connect nearby devices. They also have
limited computing capability. IoT devices are connected to
fog directly or through gateway. Fog computing made up
of Micro Data Center (MDC). Micro Data Center consists
of computing resources of two types: fog controller and
fog nodes. Fog controller manages all the resources at
MDC. Fog nodes provide computational capacity close to
edge of IoT network, which will help in pre-processing
data, fulfilling most of requests locally, only
computationally intensive requests are moved to cloud,
thus saving bandwidth and energy. Cloud data center
offers on-demand services, computing power required for
intensive processing, archival data storage. It uses machine
learning techniques to learn from data and adjust system
operation. Users consume the services enabled by the IoT.
They connect to the IoT network through various
connecting technologies (BLE, Wi-Fi) and devices
(smartphones, computers). User may be local to IoT
network and has access to the services locally. Remote
users connect to IoT network through cloud.

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4164

3.1 Distributed IoT Middleware

Based on hierarchical structure of IoT system, the
distributed IoT middleware is able to provide service
orchestration in cloud and fog as shown in Fig 2.

Figure 2: Distributed cloud-fog middleware

Figure3: Model of IoT Middleware using queuing network

Middleware manages distributed processing using service

orchestrator and fog controller. Service orchestrator
handles service which are computationally intensive or not
delay-sensitive e.g. big data analytics request. Service
orchestrator is central component of middleware. It
controls the operation of fog controller and prepares
service execution plan.

Fog controller is responsible for execution of service
request locally and controls fog nodes. Fog controller can
function independently if service orchestrator is
unavailable. It distributes service execution request among
fog nodes. Fog nodes interact perform sensing, actuating
task either on-demand or periodically. Resource manager
keeps track of all fog nodes, service request, service
request queue, utilization, availability of gateways, and
devices added to/removed from IoT network. Service

registry maintains directory of computing service offered
and their corresponding implementation. It exposes this
directory through API which can be used by resource
manager and fog controller. Context manager monitors
device and user context. Context are used to provide
situational awareness. Network manager is responsible for
seamless connectivity among different elements and
device mobility. IoT middleware uses multiple
communication technologies for connecting IoT devices,
gateways, fog and cloud. e.g. 4G, WiFi, BLE etc.
Applications use standard API (e.g. HTTP or web service
interface) to interact with middleware. Fog nodes use
device specific APIs/drivers are used to interact with IoT
devices.

4. MODELING DISTRIBUTED IOT MIDDLEWARE

Users are sending the various request to IoT middleware
which includes sensing, actuation, historical data, device
management related data such as adding devices, updating
device profile. IoT device also keeps on sending data to
middleware e.g. sensor reading upon user request,
periodically, or when the phenomenon the device is
monitoring is changed, the profile of the device is
changed. IoT devices generated data is received by fog
node for processing.. The data arrival rate λ is assumed

follow Poisson distribution. Fog nodes are modeled as
M/M/c queue. Service rate is number of requests the fog
node can execute per second and is exponentially
distributed. For fog nodes, if the request processing rate
from IoT device is greater than service rate. Fog node will
for incoming requests to fog controller for offloading to
cloud. The resource manager continuously monitors the
utilization, queue length and throughput for every fog
node. When the server finishes the execution of the current
request, it retrieves the request waiting first come first

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4165

serve manner. All fog nodes share the same queue.
Modeling IoT middleware using the network of queues is
as shown in Fig.3.

 A fog node can accept at most K number of request
into the system, K >= c. If there is the arrival of request
while the queue is full, the fog controller will search for
lightly loaded nearby fog node if available otherwise
offloaded to cloud.

Table1: Queueing parameters of IoT system

Notation Description

λcloud Net arrival rate of requests at cloud data center
λfog Net arrival rate of requests at fog
 µ Service rate of a computing node
Π Steady state probability
Ρ Load or intensity
T Response time
Tq Waiting time in queue
S Mean service time
N Number of requests in system
Nq Number of requests in queue waiting for queue
C Number of servers sharing same queue
Pb Probability that request is blocked because

 queue is full
Pcloud,fog Probability that request is forwarded to fog

 server to fulfill
Pfog, cloud Probability that request is forwarded to cloud

 for intensive processing or for storing data to
datastore

K Queueing capacity of fog computing center
R Minimum resource requirement to handling

 given arrival rate
X Throughput

Nusers Number of active users
Niot Number of IoT devices managed by single

MDC

4.1 Micro Data Center

The arrival rate of requests at fog (𝜆𝑓𝑜𝑔) will be a

combination of a portion of requests arriving from the
cloud and, the portion of requested generated on-premise
user and IoT devices is :

 𝜆𝑓𝑜𝑔 = 𝜆𝑐𝑙𝑜𝑢𝑑 ∗ 𝑃𝑐𝑙𝑜𝑢𝑑,𝑓𝑜𝑔(1 − 𝑃𝑏) + 𝜆𝑙𝑜𝑐𝑎𝑙(1 − 𝑃𝑏) (1)

 𝜆𝑓𝑜𝑔 = (𝜆𝑐𝑙𝑜𝑢𝑑 ∗ 𝑃𝑐𝑙𝑜𝑢𝑑,𝑓𝑜𝑔 + 𝜆𝑙𝑜𝑐𝑎𝑙)(1 − 𝑃𝑏) (2)

 The notations for parameters used in this paper are
shown in Table 1. For steady state the arrival rate 𝜆𝑓𝑜𝑔 and

service time µ𝑓𝑜𝑔should follow 𝜆𝑓𝑜𝑔/µ𝑓𝑜𝑔<1. The

expected number of requests 𝑃𝐾in at any time for
M/M/c/K system is given below [3]:

 𝑃𝐾 = (𝑐𝑓𝜌)𝑁𝑐𝑓!𝑐𝑓𝑁−𝑐𝑓 𝑃0 (3)

 The number of requests 𝑁, requests waiting in queue
Nq, waiting time in the queue 𝑇𝑞, response time 𝑇,

utilization 𝜌, and throughput for fog nodes can be
calculated using formulae given in Table 2.

4.2 Cloud Computing Center

 The cloud computing center is modeled as M/M/c
queue with the inter-arrival time between requests follows
a Poisson distribution. The service time µ𝑐𝑙𝑜𝑢𝑑 is identical
for all 𝑐 servers which is exponentially distributed. The
requests are processed in a FCFS manner and queue has an
infinite capacity to hold incoming request. The total arrival
rate of requests at the cloud server is consists of a rate of
requests coming from outside of network and rate of
requests coming from fog:
 𝜆𝑐𝑙𝑜𝑢𝑑 = 𝜆𝑓𝑜𝑔 ∗ 𝑃𝑐𝑙𝑜𝑢𝑑,𝑓𝑜𝑔 + 𝜆𝑟𝑒𝑚𝑜𝑡𝑒 (4)

At steady state, the flow balance equation is (subscript
cloud is omitted for sake of clarity): 𝜋𝑖 = 𝑐𝜌𝑖𝜋0𝑖! 𝑐 ≤ 𝑖
 𝜋𝑖 = 𝑐𝑐𝜌𝑖𝜋0𝑖! 𝑐 > 𝑖 (5)

The system utilization is ρ = λ/cμ, the arrival rate of the
individual server is :

 𝑅 = 𝜆𝑐𝑙𝑜𝑢𝑑µ𝑐𝑙𝑜𝑢𝑑

(6)
where R is a resource requirement, the minimum number
of servers required to process given arrival rate. For
example, if the arrival rate is λ = 30 req/sec and service
rate μ = 5 req/sec, the minimum of 6 servers are required
for a stable system. A request arrives at the data center, the
probability that request has to queue because all servers
are busy is:

 𝑃𝑄 = ∑ 𝜋𝑖∞𝑖=𝑘 = 𝐾𝐾𝐾! 𝜋0 ∑ 𝜌𝑖∞𝑖=𝑘 (7)

 𝑃𝑄 = (𝑐𝜌)𝑖𝑐!(1−𝜌) 𝜋0 (8)

where 𝜋0 is:

 𝜋0 = [∑ 𝑘𝜌𝑖𝑖!∞𝑖=𝑐 + (𝑘𝜌)𝑘𝑘!(1−𝜌)]−1
 (9)

 The above equation is the Erlang-C formula for M/M/k
queueing system [7]. The number of requests N, requests
waiting in queue for service Nq , waiting time in queue Tq,
response time T , utilization of fog system ρ, throughput
for cloud can be calculated using formulae given in Table
2. The minimum resource requirement R given in (6) to
service given incoming load at arrival rate λ. If the
workload increases by a factor of x, the resource
requirement R for the increased workload is obtained
using square root staffing rule [5] as below:

 𝑐 = 𝑅 + 𝑑√𝑅 (10)

where positive d is constant determined according to based
on desired QoS and the second term is the additional
resource (staffing) required in order to meet desired QoS
given in SLA under the uncertain workload.

5. SCALABILITY

IoT is a hot research area nowadays, scalability of IoT
middleware (and IoT system in general) has remained a
neglected research topic. It is used ambiguously, and there
is no agreed upon definitions. Bondi define [19] scalability
as “the capability of a system, network, or process to
handle a growing amount of work, or its potential to be
enlarged in order to accommodate that growth”. This

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4166

definition can be used to understand the growing
phenomenon but lacks the quantification required to
measure and reason upon the behavior of the system.
According to Weinstock [20], “scalability is the ability to
handle the increased workload by repeatedly applying a
cost-effective strategy for extending a system’s capacity”.
In the art of scalability [21], the author introduces

scalability cube in which x-axis represents breaking
workload among parallel processing units, the y-axis
represents breaking workload based on the type of request,
z-axis represents dividing workload based on the type of
user. The given system can apply any combination of x, y,
and z-axis split to achieve scalability. The techniques used
in the distributed system [22] for scalability

Table 2: Performance measures for IoT network of queues

Metrics Fog (M/M/c/K) Cloud (M/M/c)

Queue length (Nq) 𝑁𝑞 = 𝑃0(𝑐𝜌)𝑐𝜌𝑐!(1−𝜌) 2 [1 − 𝜌𝐾−𝑐 − (𝐾 − 𝑐)𝜌𝐾−𝑐] 𝑁𝑞 = 𝑃𝑄 𝜌(1−𝜌)
Number of in system (N) 𝑁 = 𝑁𝑞 + 𝜆𝑓𝑜𝑔µ𝑓𝑜𝑔 𝑁 = 𝜆𝑇 = 𝑃𝑄 𝜌(1−𝜌) + 𝑐𝜌

Waiting time in queue(Tq) 𝑇𝑞 = 1𝜆𝑓𝑜𝑔 𝑁𝑞 𝑇𝑞 = 1𝜆 𝑁𝑞 = 1𝜆 𝑃𝑄 𝜌(1−𝜌)
Response time (T) 𝑇 = 𝑇𝑞 + 1𝜇 𝑇 = 𝑇𝑞 + 1𝜇 = 1𝜆 𝑃𝑄 𝜌(1−𝜌) + 1𝜇

System utilization (ρ) 𝜌 = 𝜆𝑐𝜇 𝜌 = 𝜆𝑐𝜇

Throughput (X) 𝑋𝑖 = 𝜆𝑖 𝑋𝑖 = 𝜆𝑖

are i) replication ii) caching iii) load
distribution/balancing, and iv) asynchronous request
handling.

According to Jogalekar [23], “scalability Ψ(k1; k2)
from one scale k1 to another scale k2 is the ratio of the
efficiency figures for the two cases”, as given below:

 𝛹(𝑘1; 𝑘2) = 𝐸(𝑘2)𝐸(𝑘1) (11)

where 𝐸(𝑘1) 𝐸(𝑘2) are efficiencies at workload 𝑘1 and 𝑘2.
In the Guerrilla Capacity Planning book [24], Gunther
defines scalability as “functional relation between the
independent variable and dependent variable”. e.g. the
relation between response time and arrival rate, number of
processor and throughput, etc. Universal scalability law
(USL) provides the mathematical background for
scalability in parallel and distributed computing
environment as described below. Speed up [24] is defined
as “the ratio of time required to compute given the task in
T1 time units on uniprocessor system to the same amount
of work carried out on the p-way multiprocessor system”.
The given task is broken into sub-task, fed to processors,
executed in a parallel fashion and speed up is achieved.
There is a certain amount of work which cannot be
parallelized given by Amdahl’s law below:

 𝑋 = 𝑒𝑐1+𝜎(𝑐−1) (12)

where σ is the coefficient of contention, e is slope
constant.
The contention is part of work which cannot be
parallelized and queue up. Thus degrades scalability and
contribute to limiting factor on scalability.

In a multiprocessor environment, every processing (core
or fog nodes) element maintains own copy of data in the
cache. When one processor modifies data element it needs
to update at all other processor holding the same data
element. This introduces cache coherency overhead, it
increases quadratically with the number of processors,

given by the degree of a fully connected graph. The
equation (12) becomes:

 𝑋 = 𝑒𝑐1+𝜎(𝑐−1)+𝛽𝑐(𝑐−1) (13)

where β is coherency coefficient. The equation (13) is
Gunther’s universal scalability law. Gunther has
demonstrated the applicability of USL in distributed
processing e.g. three-tier web application [24], Hadoop
processing [25].

Fog middleware fetches the data on behalf of the user.
Fog node maintains the latest sensor readings. Even if
every fog node maintains a local copy of sensor reading, it
does not modify the data and hence there is no cache
consistency overhead. The USL in (12) cannot be directly
applied to the IoT scenario. For multi server queue M/M/c
or M/M/c/K, when utilization reaches threshold say 80%
or response time is more than specified in SLA, more
resources are added, e.g. in a cloud-based environment,
additional fog nodes are deployed to meet the current load.
Such configuration of multi-server queueing systems is
infinitely scalable. But it practice scalability is limited by
contention as given in equation (12). IoT system as a
distributed system, organized in a hierarchical fashion
with cloud data center is at root, fog nodes at level 1, then
gateway connecting IoT device at level 2 and finally IoT
devices are at edge of network.
i. As the number of users λ users increases the

service manager module will interact more
frequently with the service discovery module,
data store, event handler, and context manager.

ii. Increase in the number of IoT devices will cause
frequent updates in the data store, device registry,
context manager, which will trigger interaction
among the rest of the module and with cloud
computing center.

iii. Load balancer and resource manager work grows
with the increase in the number of active users
Nusers, the number of IoT device Niot managed by
single fog computing center and varying number

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4167

of fog nodes as per current workload demand.
Therefore scalability function for IoT middleware
is given by:

 𝑋 = 𝑐1+𝜎(𝑐𝑓𝑜𝑔−1)+𝑘(𝑎𝑁𝑢𝑠𝑒𝑟𝑠+𝑏𝑁𝑖𝑜𝑡)𝑐𝑓𝑜𝑔 (14)

coefficients a, b are coherency introduced because of users
and IoT devices respectively. Equation (14) is scalability
function for IoT middleware, modeling relation between
throughput X, number of fog nodes c, to handle current
workload, number of active users Nusers, and number of
IoT device Niot .

5.1 Performance monitoring and dynamic scaling
The following algorithm gives the procedure for
monitoring the performance of the system modeled in
Section 4 and Section 5. In beginning the threshold values
for response time, utilization, number of requests in the
queue is set. The parameter values system utilization, the
number of requests in the queue, number of requests in the
system, waiting time, response time and throughput, at fog
are calculated for given arrival rate. The program
continuously monitors values for response time, utilization,
number of requests in the queue, if any of these condition
turns true. The resource demand for the current arrival rate
is calculated and an additional number of instances of fog
nodes are deployed to meet current processing demand.

Table4: Dynamic scaling algorithm for fog computing
center
Ln Statements

1 Input: λ, μ, c, K

2 Output: Utilization, X, T and N q are below threshold

3 Begin

4 Set thresholds Nt, Ut

while(TRUE)
 {

5 //compute all performance parameters for current
// arrival rate

6 //System utilization
7 𝜌 = 𝜆𝑐µ

8 // Waiting for queue length (Nq)
9 𝑁𝑞 = 𝑃0(𝑐𝜌)𝑐𝜌𝑐!(1−𝜌) 2 [1 − 𝜌𝐾−𝑐 − (𝐾 − 𝑐)𝜌𝐾−𝑐𝑢]
10 // Number of requests at fog
11 𝑁 = 𝑁𝑞 + 𝜆𝑓𝑜𝑔µ𝑓𝑜𝑔

12 // Waiting time in queue(Tq)
13 𝑇𝑞 = 1𝜆𝑓𝑜𝑔 𝑁𝑞

14 // Response time
15 𝑇 = 𝑇𝑞 + 1𝜇

16 // Throughput
17 𝑋 = 𝑐1+𝜎(𝑐𝑓𝑜𝑔−1)+𝑘(𝑎𝑁𝑢𝑠𝑒𝑟𝑠+𝑏𝑁𝑖𝑜𝑡)𝑐𝑓𝑜𝑔

18 // Monitor value of performance parameters every
 // t interval

19 if(Nq>Nt|| U>Ut)
20 alert(“More resources need to added to be

 added to handle the current load”)
21 // Compute no. of fog nodes required to meet

 // service demand
22 𝑅 = 𝜆𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝜇

23 𝑐 = 𝑅 + 𝑑√𝑅
24 }
25 End
Ln: Line number

6. RESULTS AND DISCUSSIONS

The scalability functions introduced in Section 5 and
M/M/c/K queue for fog nodes are implemented in Java.
We have used Java Modeling Tool (JMT) for simulation
of queueing network build for cloud-fog based IoT
middleware Section 4. JMT is open source modeling tools
used for solving a wide variety of problems modeled as
queueing systems. The results Java program for FCC and
its corresponding simulation in JMT are almost matching,
which validates our experiment. In this section, we
provide details of our experiment and simulations.
 The fog has enough resources to carry out local, and
real-time request processing. To evaluate the response of
fog with an increase in load we have implemented
scalability function. The arrival rate was increased from
1000 req/sec to 5000 req/sec, the number of fog nodes
used to handle request requests was increased from 1 to
50. The observed throughput is given in Fig. 4(a). In the
hierarchical organization of the cloud-fog based IoT
system, the coherency overhead is less, hence the
scalability function is given (14) shows significant
improvement compared to USL. But there is coherency
introduced because of interaction among middleware
modules, so the scalability achieved is sub-linear.
Compared to the ideal throughput is 5000 req/sec,
Amdahl's equation achieves 4016 req/sec while the
scalability function introduced in this paper achieves only
3508 req/sec.

Table 4: Specification of parameter values for simulation

Parameter Fog Cloud

λfog 1000(1-PK) 250
λlocal_user 250 75
λIoT_data 250 175

K 100 NA
 µ fog 800 NA
cfog 3 NA

Pfog,cloud 0.5 NA
λcloud, 500 1000
 µcloud NA 7000
 cloud NA 10

Pcloud,fog NA 0.75

 The network of queues consisting of fog and cloud
servers was built using the JSIM tool of JMT. The
simulation started with an overall 1000 requests arriving
per second. The parameter important for simulation and
their values are given in Table 4. There are two category
of traffic entering local users request and remote users’

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4168

request. The requests entering into system at cloud are by
remote users λ cloud at arrival rate of 1000 req/sec. The
requests are processed at cloud leave system with 0.3
probability or forwarded to fog nodes with 0.7 probability.

 We used 10 physical servers (PS) at cloud data center,
each can accommodate maximum 7 fog nodes, and each of
fog nodes is capable of handling 100 requests per second.
The total service rate at cloud is 7000 requests per second.
At fog there are 3 fog nodes, each can process 800
incoming requests per second. The total service rate at fog
is 2400 requests per second and queue capacity is 100
requests/sec.
Using what-if analysis feature of JMT, arrival rate was
increased from initial 1000 req/sec to 5000 req/sec with
increment of 250 in every step. Increase in utilization of

fog nodes at fog and cloud is shown in Fig. 4(b), with an
increase in arrival rate, utilization increases in proportion.
At fog nodes since processing capacity is limited all nodes
reach 100% utilization at an arrival rate of 2400 requests
per second. For all arrival rate above 2400 req/sec the
requests were forwarded to cloud as shown in Fig. 4(c), at
5000 req/sec 2581 requests for worded per second, the
forwarding rate was rate was 51.64%, which indicated that
fog computing center was overloaded and unable to handle
current workload became, hence became bottleneck. In the
case of cloud computing center, the utilization was 80%
even at the maximum arrival rate.

 The mean response time increases with an increase in
arrival rate as shown in Fig. 4(c). The SLA for maximum

(a) Throughput comparison of Ideal, Amdahl's Contention

USL and IoT scalability function

(b)CPU Utilization with increase in arrival rate

(c) Mean response time

(d)Throughput

Figure 4: Scalability and performance analysis

response time was set to 20 ms (it is time spent by request
in the system, end to end response time which user will
experience requires considering transmission delay of
LAN and WAN based on the category of a user). At 2400
req/sec drastically rise from 15ms to 120ms. It was
necessary to add more fog nodes in order to meet given

SLA. At cloud computing center the response time was
less than 20ms even at 5000 req/sec. The throughput in
terms of the number of requests fulfilled per second is
shown in Fig. 4(d). Throughput goes on increasing with
arrival rate.

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4169

 Fog computing center was unable to handle the
increase in arrival rate from 1000 req/sec to 5000 req/sec.
The utilization was full, response time grown
unpredictably, throughput was saturated and the drop rate
was 51.64%. JMT simulation provides very useful insight
for understanding the working of cloud-fog based IoT
middleware. However, JMT lacks dynamic resource
allocation, which was required in case of fog computing
center at the arrival rate of 2400 req/sec. In order to handle
this dynamic behavior we have implemented dynamic
scaling algorithm introduced in Section 5.1, the results are
as shown in Fig. 4(b)-(d). Initially, 3 fog nodes were used
to handle requests. As arrival rate of requests increased
utilization increased proportionally at 2000 req/sec
utilization is 83.33%, new resource demand at this arrival
rate was calculated and two more additional fog nodes
were deployed, in this fashion fog computing center was
able to handle growing resource demands as shown in Fig.
4(b). For all the experiments and simulations we used Dell
Inspiron 15 with i7 processor, 8GB memory and Ubuntu
18.04.

7. CONCLUSION

In order to address the tremendous growth the IoT network
is witnessing, scalability is one of the pressing issues must
be resolved by researchers. The hierarchical organization
of cloud-fog based IoT system enables scalability by the
architectural design itself. However, the rapid increase in
load on fog by factor multiple of current workload, fog
computing center will become the bottleneck. In this
paper, we have systematically presented the scalability
analysis of fog based Internet of Things middleware. We
first modeled the IoT system using a queueing network,
based on the foundation of this model; scalability function
is presented which considers contention and coherency
overhead which limits scalability.
 We were interested in finding the effect of an
increase in the number of users or IoT devices on
throughput, utilization, response time of fog and cloud.
These parameters are crucial for answering the questions
related to the scalability of IoT middleware. We conducted
a simulation using JMT simulator. The results of
simulation and implementation show that the proposed
model scales sub-linearly. These results are general
enough to apply in any setting of IoT middleware and
application set up, it does not depend on any particular
suite of technology e.g. if fog nodes is replaced by docker
container. When fog center becomes overloaded,
investigating scalability by offloading requests to
neighboring fog nodes rather than remote cloud will be our
future work.

REFERENCES

[1] D. Evans, The Internet of Things: How the next
evolution of the Internet is changing everything, white

paper, Cisco, 2011.

[2] O.Sezer, E. Dogdu, A. Ozbayoglu, Context-Aware
computing, learning, and big data in Internet of things:

a survey, IEEE IoT Journal, 5(1), 2018, 1-27.

[3] D. Rathod, G. Chowdhary, Survey of middlewares for
Internet of things, Proc. IEEE Int. Conf. on Recent

Trends in Advanced Computing: CPS, Chennai, India,
Sep. 10-11, 2018, 129-135.

[4] M. Razzaque, M. Milojevic-Jevric, A. Palade, S.
Clarke, Middleware for Internet of things: a survey,
IEEE IoT Journal, 3(1), 2016, 70-95.

[5] M. Harchol-Balter, Performance modeling and design

of computer systems:queueing theory in action,
Cambridge University Press, 2013.

[6] M. Gomes, R. Righi, C. da Costa, Internet of things
scalability: analyzing the bottlenecks and proposing
alternatives, Proc. 6th Int. Congress on Ultra Modern

Telecom. and Control Systems and Workshops

(ICUMT), 2014, 269-276.

[7] V. Soto, Performance evaluation of scalable and

distributed IoT platforms for smart regions, Masters
thesis, Dept. of CS, Ele. and Space Engg., Luleå
University of Technology, Skellefteå, 2017.

[8] Fiware: the open source platform for smart digital
future, https://www.fiware.org/, (accessed 5 April
2019).

[9] A. Esposte, E. Santana, L. Kanashiro, F. Costa, K.
Braghetto, N. Lago, F. Kon, Design and evaluation of
a scalable smart city software platform with large-
scale simulations, Future Gen. Comp. Sys. 93, 2018,
427-441.

[10] S. Maheshwari, D. Raychaudhuri, I. Seskar, F.
Bronzino, Scalability and performance evaluation of
edge cloud systems for latency constrained
applications, Proc. 3rd ACM/IEEE Symposium on

Edge Computing, 2018, 286-289.

[11] Q. Fan, N. Ansari, Towards workload balancing in fog
computing empowered IoT, IEEE Tran. on Network

Sci. and Engg., Early Access.

[12] B. Liu, X. Chang, B. Liu, Z. Chen, Performance
analysis model for fog services under multiple
resource types, Proc. IEEE Int. Conf. on Dependable

Sys.and their Applications, 2017, 110-117.

[13] R. Pinciroli, M. Gribaudo, M. Roveri, G. Serazzi,
Capacity Planning of fog computing infrastructures for
smart monitoring, New Frontiers in Quantitative

Methods in Informatics, Comm. in Computer and

Information Sci. 825, 2018, 72-81.

[14] S. Duttagupta, M. Kumar, R. Ranjan, M. Nambiar,
Performance prediction of IoT application an
experimental analysis, Proc. ACM 6th Int. Conf. on the

Int. J. Advanced Networking and Applications
Volume: 11 Issue: 01 Pages: 4162-4170(2019) ISSN: 0975-0290

4170

IoT, 2016, 43-51.

[15] J. Huang, S. Li, Y. Chen, J. Chen, Performance
modeling and analysis for IoT services, Int. J. Web and

Grid Services, 14(2), 2018, 146-169.

[16] S. Kafhali, K. Salah, Efficient and dynamic scaling of
fog nodes for IoT devices, Springer J Supercomp.

73(12), 2017, 5261-5284.

[17] C. Mouradian, D. Naboulsi, S. Yangui, R.H. Glitho,
M. J. Morrow, P. A. Polakos, A comprehensive survey
on fog computing: state-of-the-art and research
challenges, IEEE Comm. Surveys and Tutorials 20(1)
2018, 416-464.

[18] Fog computing and the Internet of things: extend the
cloud to where the things are, Cisco, White paper,
2015.

[19] A. Bondi, Characteristics of scalability and their
impact on performance, Proc. 2nd int. workshop on sw

and performance, 2000, 195-203.

[20] C. Weinstock J. Goodenough, On System Scalability,
Software Engineering Institute, Technical Note,
CMU/SEI-2006-TN-012, 2006.

[21] M. Abbott, M. Fisher, The Art of scalability: scalable

web architecture, processes, and organizations for the

modern enterprise 2nd edition, Pearson Education,
2015.

[22] B. Neuman, Scale in distributed systems, IEEE

Computer Society Press, 1994, 1-28.

[23] [23] P. Jogalekar, M. Woodside, Evaluating the
scalability of distributed systems, IEEE Tran. on

Parallel and Distributed Systems, 11(6), 2000, 589-
603.

[24] N. Gunther, Guerrilla capacity planning: a tactical

approach to planning for highly scalable applications

and services Springer-Verlag Berlin Heidelberg, 2007.

[25] Neil Gunther, Paul Puglia, KristoferTomasette,
HadoopSuperlinear Scalability, Comm. of the ACM

58(4), 2015, 46-55.

[26] Rajkumar, H. Chandrakanth, D. Anand, T. Peter,
Research Challenges andCharacteristic Features in
Wireless Sensor Networks, Int. J. Advanced
Networking and Applications vol.09(01), 2017, pp:
3321-3328.

[27] Patel Rinkuben N., N. Bhatt, Design and
Implementation of QoS Aware Priority based MAC
for Delay Sensitive Areas of WSN, Int. J. Advanced
Networking and Applications, vol.09(03), 2017,
pp.3411-3420.

	iii. Evaluate the scalability and performance of IoT middleware with respect to increased workload
	2. Literature Survey
	3. Cloud-Fog based Internet of Things Architecture
	4. Modeling Distributed IoT Middleware
	5. Scalability
	The following algorithm gives the procedure for monitoring the performance of the system modeled in Section 4 and Section 5. In beginning the threshold values for response time, utilization, number of requests in the queue is set. The parameter values...
	Table4: Dynamic scaling algorithm for fog computing center
	Ln: Line number
	6. Results and Discussions
	7. Conclusion
	References

